3. Population Biology

Principles of Ecology

- 1- Energy Flow & Productivity in Ecosystems
- **2- Biogeochemical Cycles**
- **3- Population Growth & Regulation**
- 4- Community Structure, Growth, Regulation
- 5- Habitat
- 6- Concept of Niche
- 7- Island Biogeography
- 8- Evolutionary Ecology

Principles of Evolution

- **1- History of Evolutionary Concepts**
- 2- Concepts of Natural Selection
- **3- Adaptive Radiation**
- 4- Major Features of Plant & Animal Evolution
- 5- Concepts of Homology & Analogy
- 6- Convergence, Extinction,
- **Balanced Polymorphisms, Genetic**

Drift

7- Classification of Living

Organisms

8- Evolutionary History of Humans

Principles of Behavior

1- Stereotyped, Learned SocialBehavior2- Societies

Social Biology

Human Population
 Growth
 Human Intervention in
 Natural World
 Biomedical Progress

3.1 Principles of Ecology

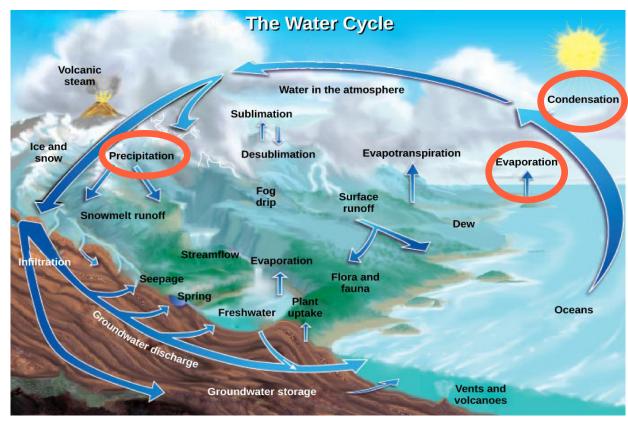
Principles of Ecology

1- Energy Flow & Productivity in Ecosystems

- **2- Biogeochemical Cycles**
- 3- Population Growth & Regulation

4- Community Structure, Growth, Regulation

- 5- Habitat
- 6- Concept of Niche
- 7- Island Biogeography
- 8- Evolutionary Ecology


Energy Flow & Productivity in Ecosystems

- Energy Flow
- Trophic Levels
- Trophic Categories
- Ecological Roles
- Transfer of Energy

Biogeochemical Cycles

- Introduction
- Water
- Carbon
- Nitrogen
- Phosphorous

Population Growth & Regulation

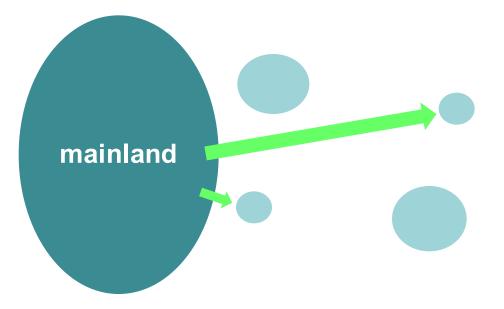
- Introduction
- Limiting Biotic Factors
- Limiting Abiotic Factors
- Density
- Demography & Growth

Community Structure, Growth, Regulation

- Introduction
- Competition
- Symbiosis
- Succession

Habitat

Definition & examples


Concept of Niche

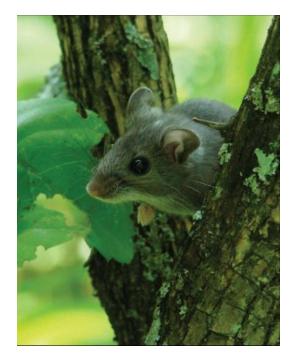
Definition & examples

Island Biogeography

- Introduction
- Dispersal
- Species Diversity
- Immigration & Extinction
- Area Effects
- Distance Effects
- Age Effects

Evolutionary Ecology

- Introduction & Example
- Interactions
- One-way Interactions
- Reciprocal Interactions



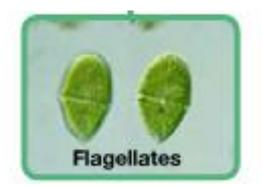
3.1.1 Energy Flow & Productivity in Ecosystems

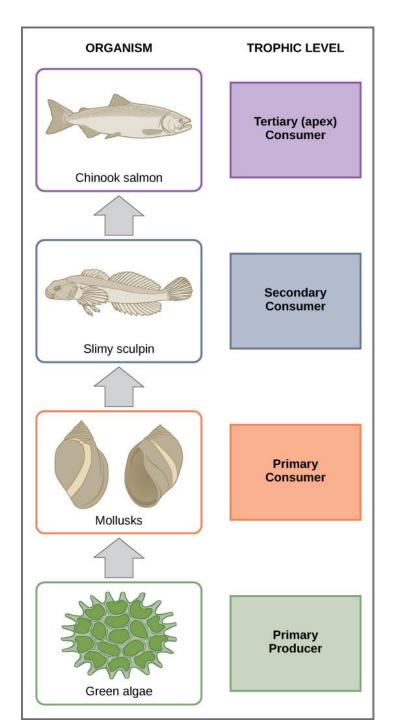
Energy Cycle

Also 'Food Chain' and 'Food Web'

- represent flow of energy (matter)
- show how energy enters & leaves

Trophic Levels


Producers: make energy accessible to ecosystems via photosynthesis


Consumers: eat producers or other consumers

Trophic Categories

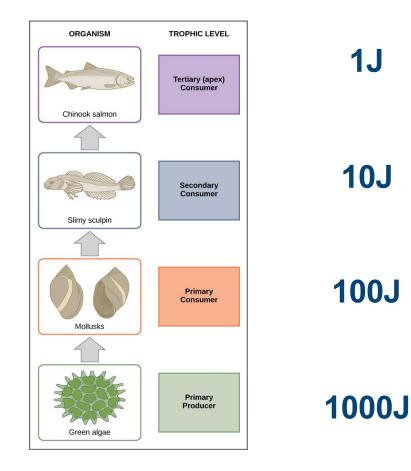
Autotrophs: self-feeders, producers, make food molecules from sun

Heterotrophs: other-feeders, consumers, get food molecules from eating other

Ecological Roles

Herbivores: eat plants

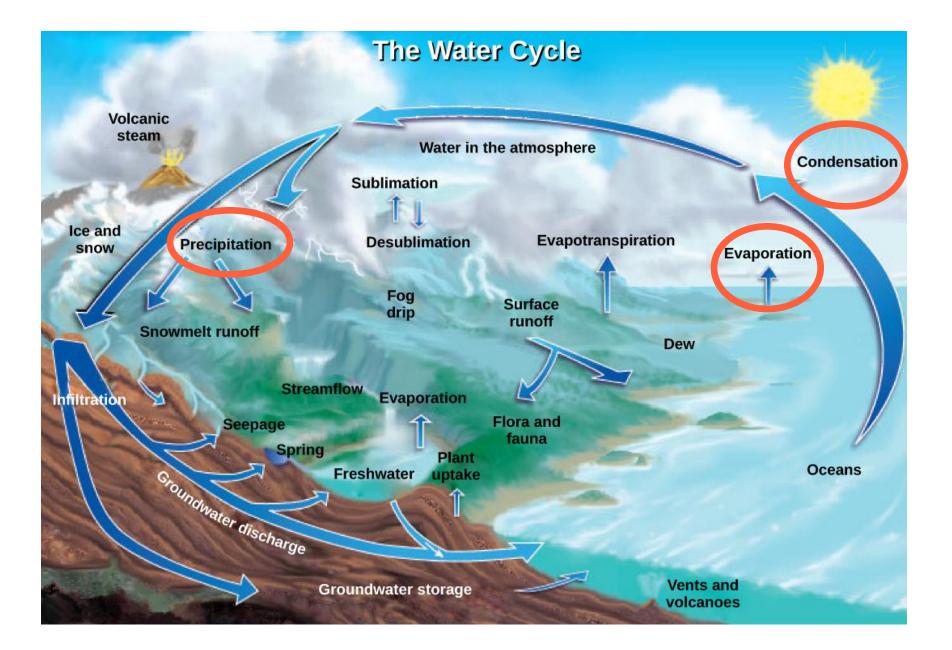
Carnivores: eat animals

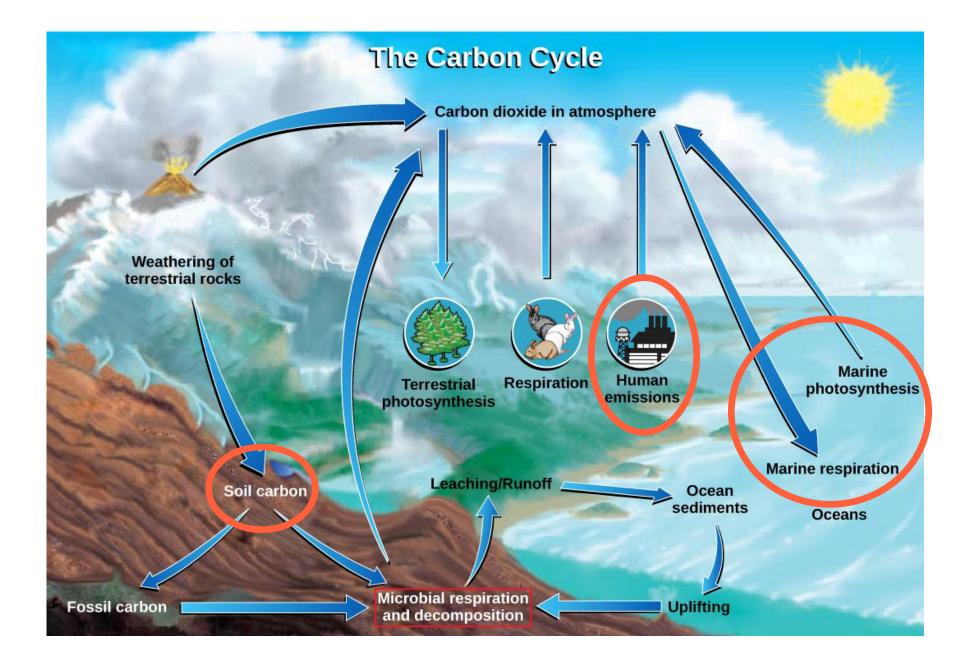

Omnivores: eat plants & animals

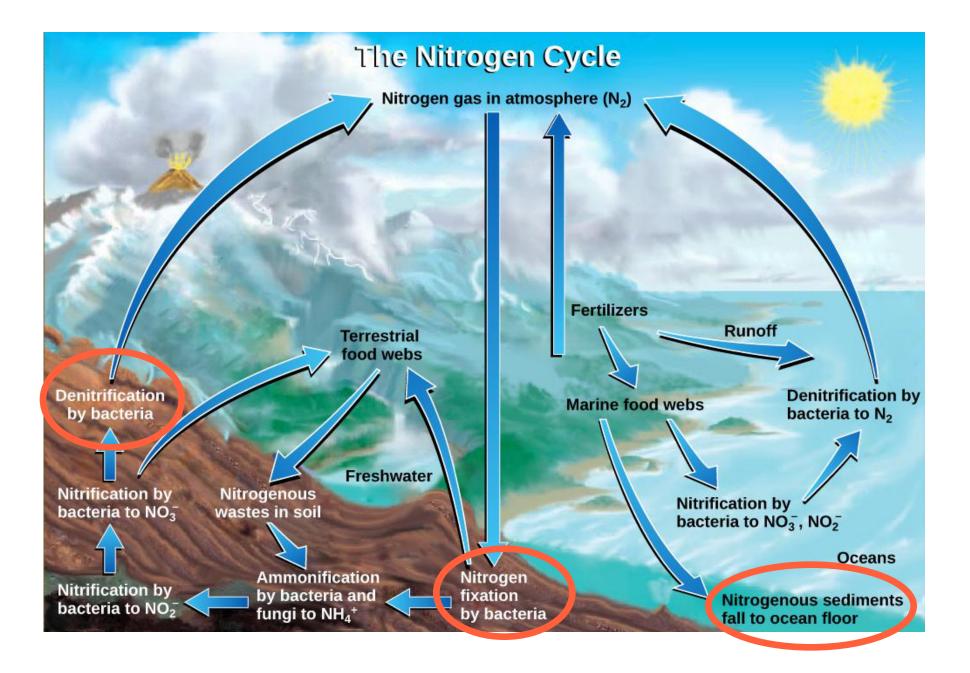
Transfer of Energy

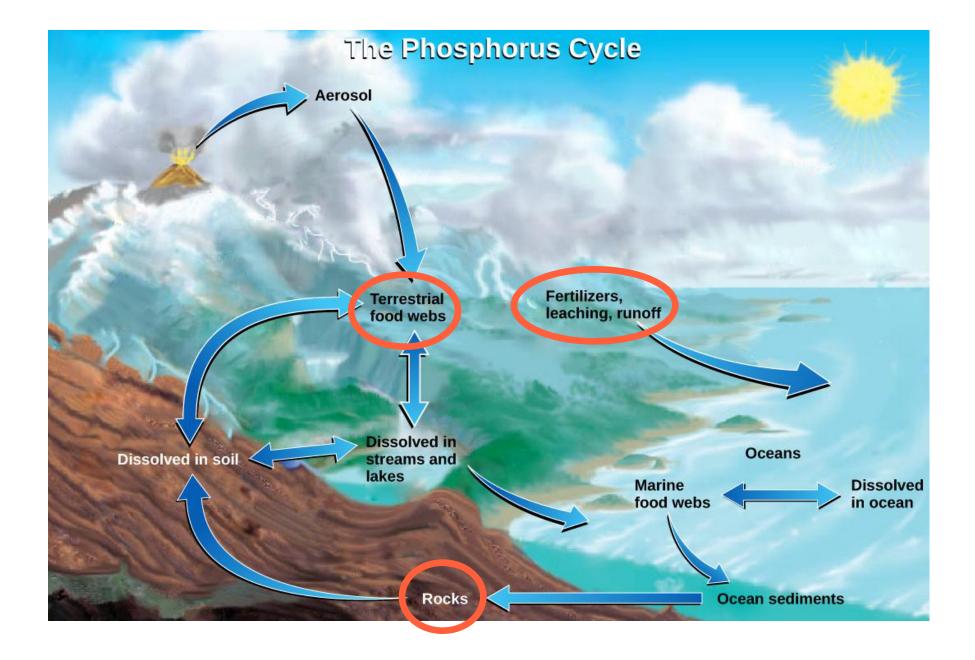
Very inefficient due to heat loss

Each higher level gets 10% of previous




3.1.2 Biogeochemical Cycles


Biogeochemical Cycle?


Bio: living things Geo: sediments/ rocks Chemical: molecules Cycles: circular movement

Circular movement of molecules through an ecosystem's living and non-living things

3.1.3 Population Growth & Regulation

What is it?

Study of groups of organisms of one species living together (population)

- limiting factors
- birth rate
- death rate
- growth rate

Limiting Biotic Factors

- Dispersal: movement away from center
- Competition
- Predators
- Lack of prey/ food
- Parasites

Limiting Abiotic Factors

- Climate
- Landscape
- Soil
- Water salinity
- Sunlight

Density

Density: # individuals per unit area

Density-dependent regulators:

- competition
- predation
- disease

Density

Density-independent regulators:

- climate
- disturbance (fire, flood, etc.)
- pollution

Demography & Growth

Demography: vital statistics like birth & death rate, age at maturity

Growth rate: how fast is population getting larger or smaller? Rate of growth (r) equals births (b) minus deaths (mortality, m)

r = b - m

3.1.4 Community Structure, Growth, Regulation

What is it?

Study of interactions among different species in the same area

- competition
- predation
- symbiosis
- succession

Competition

More than one species in community attempts to use the same limited resource

Competition

Competitive Exclusion Principle: no two species can occupy same niche indefinitely; one will be a better competitor, other will go extinct locally

Niche partitioning allows coexistence

Symbiosis

Close interaction b/w two species

- 1. Mutualism: both benefit
- 2. Commensalism: one benefits, other neutral
- 3. Parasitism: one benefits, other harmed

Succession

Process through which community recovers from disturbance

- 1. Primary: no soil
 - (ex: lava flows, glacial moraine)
- 2. Secondary: soil present (ex: abandoned fields)

3.1.5 Habitat

Habitat

Species' physical location, including all biotic & abiotic factors it needs to survive

- pond
- forest
- river
- grassland

3.1.6 Concept of Niche

Ecological Niche

Species' role in community

- time of day/ year
- parts of habitat
- prey size
- temperature
- trophic level

3.1.7 Island Biogeography

Biogeography

Study of distribution of organisms in space, historically & currently

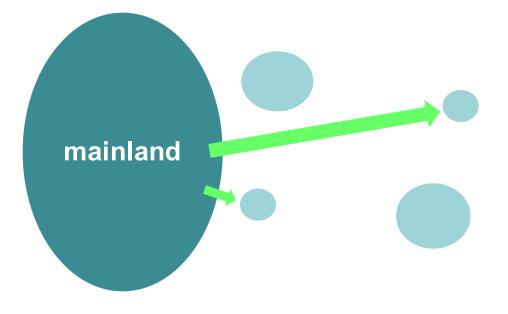
Island Biogeography

Biogeography specific to islands & their species

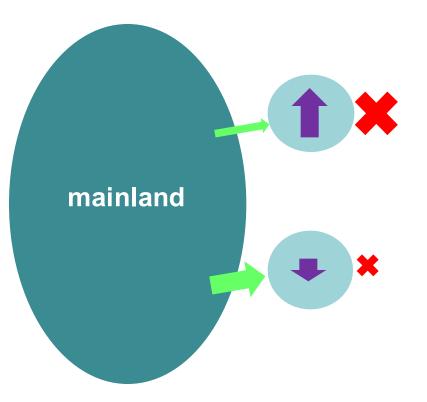
- dispersal
- species diversity
 - area effects
 - distance effects
 - age effects

Dispersal

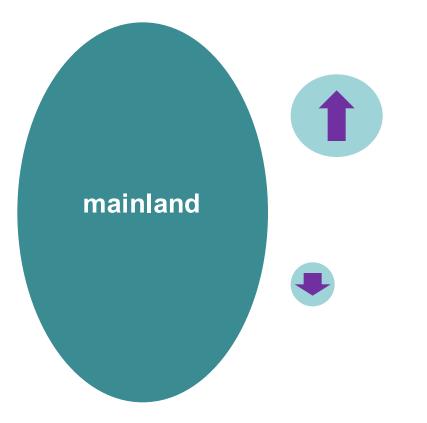
Species reach islands by dispersal methods


- flying
- blown by wind
- floating on water

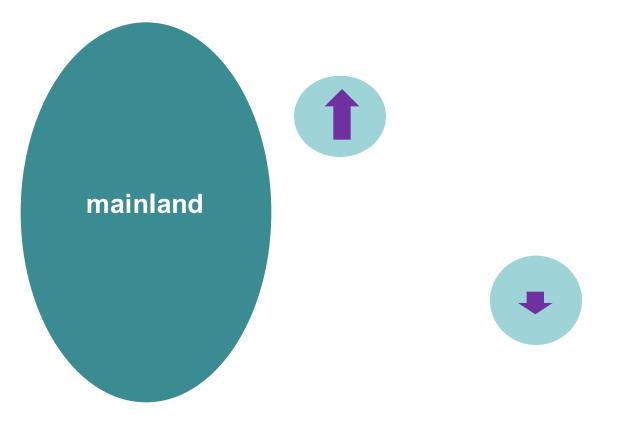
Species Diversity


Number of species on island determined by:

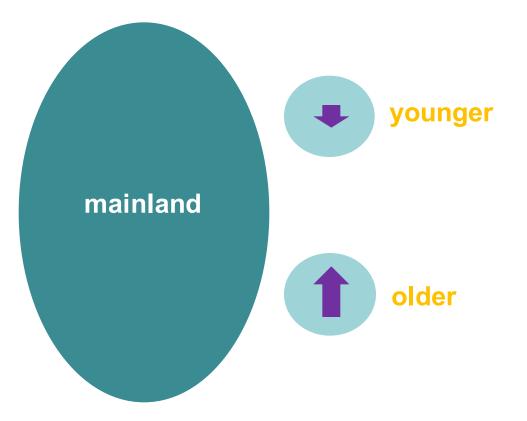
- immigration & extinction rates
- size
- distance
- age


Immigration & Extinction

As diversity increases, immigration rate decreases and extinction rate increases


Area Effects

Diversity highest on larger islands


Distance Effects

Diversity highest on near islands

Age Effects

Diversity is highest on older islands

3.1.8 Evolutionary Ecology

What is it?

Study evolution of interactions between & among species and with their environment

- competitors
- mutualists
- predators
- prey
- pathogens

Example: Research on the origin of the mutualism b/w termites and protozoa

Interactions

Two types studied:

- 1. with physical environment
- 2. with other species
 - a. one-way
 - b. reciprocal

One-way Interactions

One species affects another, but not vice versa

commensalism

Reciprocal Interactions

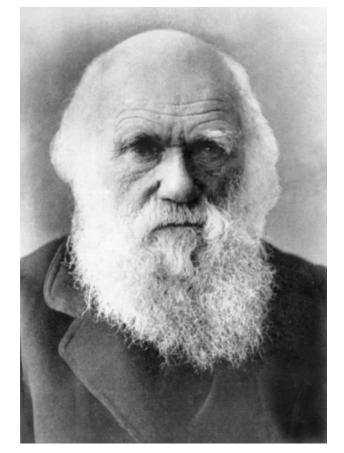
Two species affect each other

- predator-prey
- parasite-host
- competitors

3.2 Principles of Evolution

Principles of Evolution

- **1- History of Evolutionary Concepts**
- **2- Concepts of Natural Selection**
- **3- Adaptive Radiation**
- 4- Major Features of Plant & Animal Evolution
- 5- Concepts of Homology &
- Analogy
- 6- Convergence, Extinction,
- **Balanced Polymorphisms, Genetic**
- Drift
- 7- Classification of Living
- Organisms
- 8- Evolutionary History of Humans


History of Evolutionary Concepts

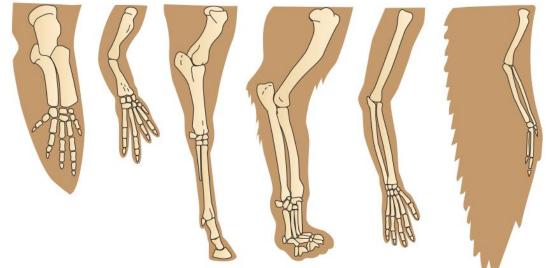
- Evolution
- Carolus Linnaeus
- Lamarck

Concepts of Natural Selection

- Darwinian Concept
- Modern Synthesis

Adaptive Radiation

- Adaptations
- Species
- Resource Partitioning


Major Features of Plant & Animal Evolution

- Plant Evolution
- Animal Evolution
- Explosions

Concepts of Homology & Analogy

- Homology
- Analogy

Convergence, Extinction, Balanced Polymorphisms, Genetic Drift

- Convergence
- Extinction
- Balanced Polymorphisms
- Genetic Drift

Classification of Living Organisms

- Taxonomy
- Taxa
- The Domain
- Classification of Domestic Cat
- Eukaryote Kingdoms
- Animal Phyla

Evolutionary History of Humans

- Order Primates
- Great Apes
- Hominid Fossils
- Location

3.2.1 History of Evolutionary Concepts

Evolution

Genetic change in a population over time

Carolus Linnaeus

Invented binomial nomenclature

Wrote about origins & relationships b/w organisms (1700s)

Proposed that organisms acquire traits throughout lifespan & pass these on (proven false)

3.2.2 Concepts of Natural Selection

Darwinian Concept

Natural Selection is driving force behind evolution

- more offspring produced than can survive
- variation in characteristics among individuals of population
- some individuals better competitors
- these have more offspring
- frequency of characteristic increases in population
- population smallest unit that can evolve

Modern Synthesis

Darwin's theory still supported, but we know more details now:

- characteristics result from genes
- variations in characteristics result from alleles
- evolution can take thousands of years

3.2.3 Adaptive Radiation

Adaptations

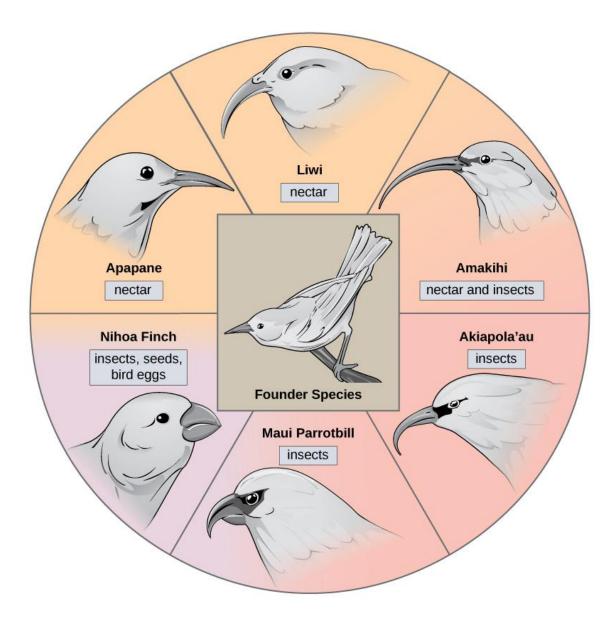
Inherited characteristics that provide survival/ reproductive advantages

- speed
- camouflage
- armour
- hearing

Species

Population of interbreeding individuals, common gene pool, viable offspring, don't interbreed w/ other populations

A new species forms when two populations no longer interbreed

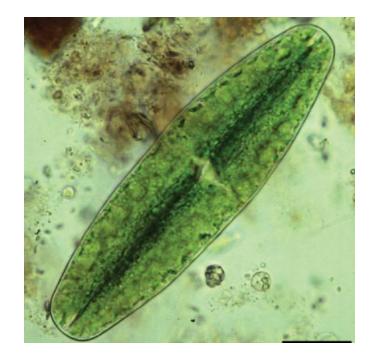


Resource Partitioning

Decreases competition b/w species by utilizing more specialized niches

Adaptive radiation occurs as result of resource partitioning:

- alleles that allow individuals to use resources differently are adaptive
- over time, many new species evolve as result of benefits of using new niches


3.2.4 Major Features of Plant & Animal Evolution

Plant Evolution

Endosymbiont Theory explains evolution of autotrophs from heterotrophs

Early plants were aquatic, asexual

Movement to land accompanied by adaptations for water storage, increased gravitational pull

Plant Evolution

Separate sexes allowed for greater genetic diversity

First land plants didn't have seeds

Evolution of seeds allowed colonization of more habitats

Evolution of flowers allowed animal attraction for pollination & seed dispersal

Animal Evolution

First animals were aquatic, unicellular, soft-bodied

Multicellularity & hard structures appeared (spicules, exoskeletons)

Invertebrates first on land

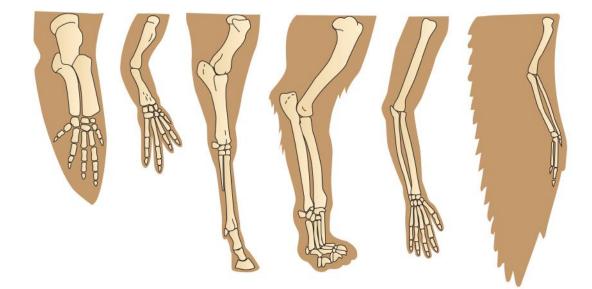
Animal Evolution

Fish were first w/ backbones

Adaptations for conserving water & dealing with higher gravitational pull appeared with land colonization

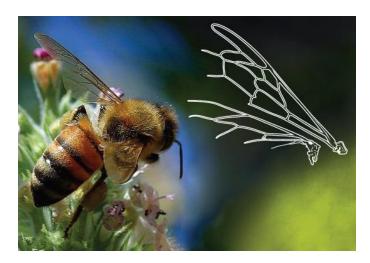
Explosions

Cambrian explosion: rapid increase in multicellular organisms


- aquatic plants appeared
- most major animal phyla appeared
- new niches evident: active hunting, burrowing into sediment, making branching burrows

3.2.5 Concepts of Homology & Analogy

Homology


Similar structures resulting from common ancestry, could have different functions.

Analogy

Similar structures resulting from common function but not common ancestry

3.2.6 Convergence, Extinction, Balanced Polymorphism, Genetic Drift

Convergence

Convergent evolution: unrelated species evolve similar characteristics due to similar environments

Extinction

When a species disappears from planet forever

Permian extinction (250mya): 96% species lost

Balanced Polymorphism

Polymorphism: genetic diversity within a species for a particular trait

Balanced Polymorphism: natural selection tends to keep number of forms stable; when one is scarce, its fitness increases

Genetic Drift

Random change in allele frequency for a particular trait in a single population

Ex: Storm randomly causes death of most squirrels carrying alleles for light coat color

3.2.7 Classification of Living Organisms

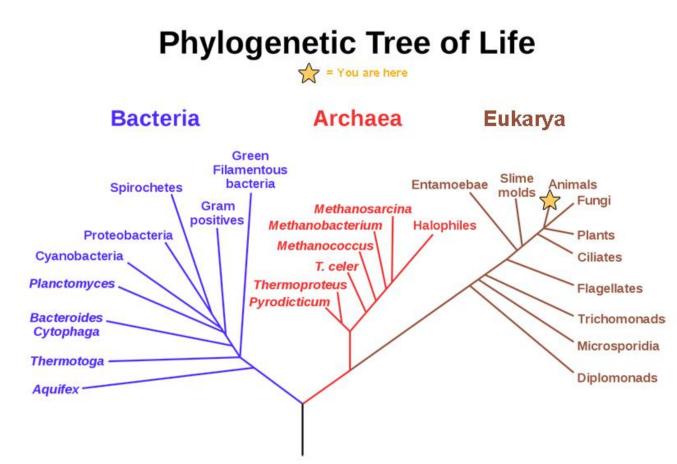
Taxonomy

Organizes living things into groups based on appearance, genetics, evolutionary history

Carolus Linnaeus invented binomial nomenclature, using genus & species "Scientific name" *Borrelia burgdorferi*

Taxa

Taxon: level of classification of living things


Kingdom Phylum Class Order Family Genus Species

The Domain

Recent addition to taxonomy

3 Domains, encompass all other taxa

- Archaea
- Eubacteria
- Eukaryota

Classification of Domestic Cat

Domain: Eukarya (eukaryotes) Kingdom: Animalia (heterotrophs) Phylum: Chordata (backbones) Class: Mammalia (milk) Order: Carnivora (meat) Family: Felidae (hypercarnivore, claws) Genus: *Felis* (small) Species: *catus* (domesticated)

Scientific Name: Felis catus

Eukaryote Kingdoms

- 1. Animalia- animals
- 2. Plantae- plants
- 3. Monera- fungi
- 4. Protista- unicellular, animal-like or plant-like

Animal Phyla

- 1. Porifera- sponges
- 2. Cnidaria- jellies
- 3. Platyhelminthes- flatworms
- 4. Nematoda- roundworms
- 5. Mollusca- clams, snails, squid
- 6. Annelida- earthworms
- 7. Arthropoda- crabs, insects, spiders
- 8. Echinodermata- starfish, sea urchins
- 9. Chordata- fish, mammals, birds, reptiles, amphibians


3.2.8 Evolutionary History of Humans

Order Primates

Prosimians: lemurs, lorises

More recent:

- tarsiers
- new world monkeys
- old world monkeys
- apes- gorilla, chimpanzee, orangutan, human

Great Apes

Humans, gorillas, chimpanzees, bonobos, and orangutans have recent common ancestor

First true hominids 4.5mya, larger brains & bipedal locomotion

Hominid Fossils

- 1. Australopithecus afarensis (Lucy)- 4.5mya, head smaller, long arms
- 2. Homo erectus- first from same genus, 1.8mya, head larger, facial features
- 3. First *Homo sapiens* (Cro-Magnon Man)- 100,000 years ago, looked like us

Location

Oldest human fossils from Africa

Fossils suggest we evolved in Africa 100,000 years ago, migrated throughout Europe, Asia, the Americas

Crossed Bering Land Bridge into North America, then to Central & South America

3.3 Principles of Behavior

Principles of Behavior

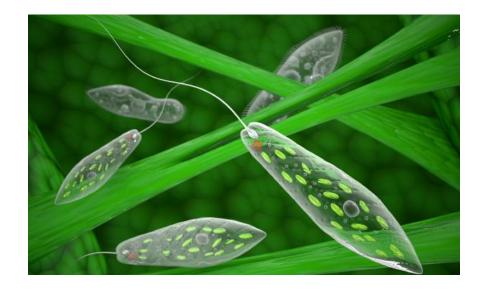
1- Stereotyped, Learned SocialBehavior2- Societies

Stereotyped, Learned Social Behavior

- Stereotyped Behaviors
- Fixed Action Patterns
- Learned Behaviors
- Conditioning
- Habituation
- Imprinting

Societies

- Society
- Insect Societies
- Primate Societies



3.3.1 Stereotyped, Learned Social Behavior

Stereotyped Behaviors

Instinctive, performed the same way by all individuals of species, in response to a stimulus

- 1. taxis-directional
- 2. kinesis- speed change
- 3. reflex- automatic movement of body part
- 4. fixed action patternmore complex series of behaviors

Fixed Action Pattern (FAP)

Behavior sequence continues, even when stimulus removed

- courtship behaviors
- feeding young
- circadian rhythms

Learned Behaviors

Not instinctive, must be seen & practiced, can be stopped midbehavior, based on life experience

- conditioning
- habituation
- imprinting

Conditioning

Behavioral response to one stimulus is applied also to different stimulus

- dogs drool when they smell food
- ring a bell when food presented
- dogs eventually drool BOTH when they smell food and hear bell

Habituation

Response decreases with exposure to stimulus if no positive or negative result

- cat cries at night for attention
- you ignore cat, so nothing good or bad happens
- cat eventually stops crying at night

Imprinting

Attachment to another animal or object during critical period (usually shortly after birth/ hatching)

- crane hatchlings see a person right after hatching, instead of another crane
- hatchlings imprint on person, following around to learn

3.3.2 Societies

Society

Organization of individuals in population, tasks divided so group works together

Insect Societies

Bees, ants, some wasps

- only queen breeds
- workers are her daughters
- different jobs, depending on age
 - nursery
 - cleaner
 - queen care
 - guard
 - forager

Primate Societies

Built around concept of dominance

- more dominant individuals get best access to mates, resources
- individuals compete for status, often when sexual maturity reached by young
- altruistic behavior common when members related

3.4 Social Biology

Social Biology

1- Human Population Growth
 2- Human Intervention in Natural World
 3- Biomedical Progress

Human Population Growth

- Human Populations
- Life Span
- Growth Rate
- Demographic Transition

Human Intervention in Natural World

- Human Population Size
- Pollution
- Resource Management

Biomedical Progress

- Nutrition
- Medical Advances
- Treatments
- Other Advances

3.4.1 Human Population Growth

Human Populations

```
Grow by same means as other
populations
births – deaths = growth
```

Complex, b/c we reason around resource limitations, technology, think about reproductive behavior

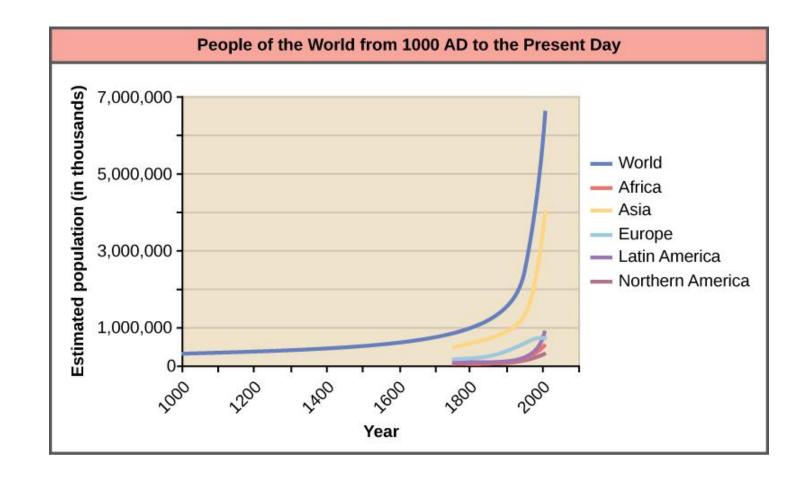
Life Span

Better nutrition & medicine have increased human life span

Infant mortality greatly decreased

Birth rate decreased due to contraception

Growth Rate


Over 7 billion people in 2016

Doubling time decreased

Technology increased food production, but starvation happens due to distribution

Theory proposes progressive demographic time periods of human population growth

1- At first, birth & death rates equal, population in equilibrium w/ environment

2- Societal developments of medicine & food production allow birth rate to overtake death rate, population increases rapidly

3- Agrarian lifestyles (many children for labor) become less common, children liability in urban society

4- medical advancement decreases infant mortality, urban populations increase rapidly

5- Industrialized countries lower birth rate using contraceptives

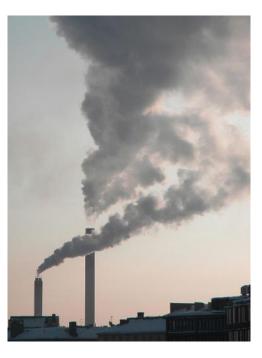
6- Increasing population strains environment, resources

3.4.2 Human Intervention in Natural World

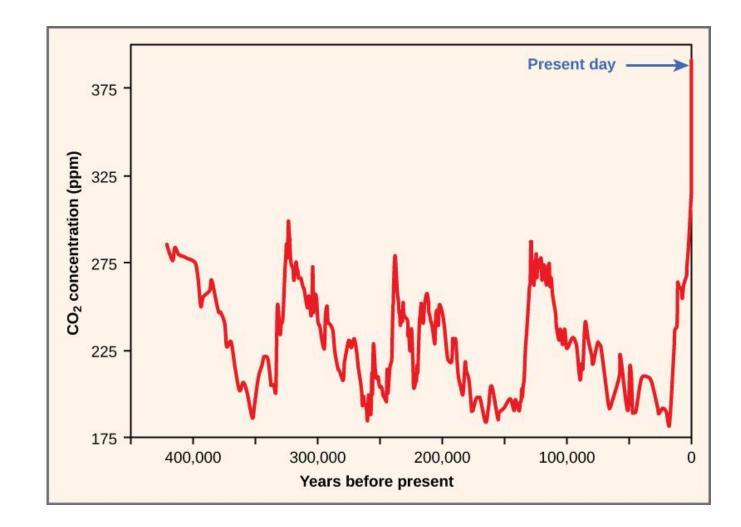
Human Population Size

Profound effects on environment

- pollution
- habitat loss
- overharvesting
- introduced species
- climate change



Pollution


Started as result of ignorance during Industrial Revolution

Addition of foreign substances to air, water, soil, etc.

- fertilizers, pesticides, herbicides
- industrial cleaners
- carbon emissions
- trash

Pollution

Resource Management

We've had success repairing damaged ecosystems

We've learned ways to protect threatened species & ecosystems

"Reduce, reuse, recycle" works

3.4.3 Biomedical Progress

Nutrition

We've learned importance of essential nutrients, allowing healthier, longer lives

Decreases sickness due to malnutrition

- scurvy
- goiter
- anemia

Medical Advances

Development of antibiotics in 1920s decreased deaths from infection

Vaccines protect from previously lethal diseases (flu, smallpox, rabies, etc.)

Antiviral treatments decrease sickness after viral infection (AIDS)

Treatments

Improvements in managing illness, synthesizing molecules have allowed people to live longer & more comfortably

- heart disease
- osteoporosis
- arthritis
- cancer
- diabetes

Other Advances

Genetically Modified Organisms have increased agricultural output

Use bacteria to make:

- human insulin
- vaccines
- cancer treatments

Investigating stem cells for organ transplantation

