What is stoichiometry?

- (Probably) the most important topic in chemistry!
- This is the basis for many subsequent chapters
- Related to the amount of a species or substance
- Sometimes referred to as the mathematics of chemistry

Some definitions

- Molar mass (aka molecular weight) - sum of atomic masses (weights) for all the atoms in a given molecule.
- Use the periodic table and the molecular formula to determine this
- Formula mass (formula weight) - sum of the masses for all the ions in a given formula unit

The periodic table

PERIODIC CHART OF THE ELEMENTS

GASES

IA	IIA	IIIB	IVB	YB	VIB	VIIB		VIII		IB	IIB	IIIA	IVA	VA	VIA	VIIA	GASES
$L_{6.939}^{3}$																	
															${\underset{32}{\mathbf{S}} \mathbf{S}_{36}^{16}}_{(}$		
		${ }_{4}^{21} \mathrm{~S} \mathrm{C}$	$\prod_{47.90}^{22}$	$\underset{50.942}{\mathbf{2 3}}$					$\stackrel{28}{\mathbf{N i}}$		$\sum_{65.37}^{30}$						
$\begin{gathered} 37 \\ \mathbf{R b} \end{gathered}$	$\underset{87.62}{\mathbf{S 8}}$		$\sum_{91.22}^{40}$			$T_{(99)}^{43} \mathrm{C}$			$\mathrm{P}_{106.4}^{46}$	$\begin{gathered} 47 \\ \mathbf{A} \mathbf{g} \\ 107.870 \end{gathered}$			$\mathbf{S n}_{118.69}^{50}$	Sb	$\prod_{127.60}^{52}$		
			$\underset{178.49}{\mathbf{H 2}}$					$\mathbf{1 r}_{192.2}^{77}$				$\prod_{204.37}^{81}$	$\begin{gathered} 82 \\ \mathbf{P} \mathbf{b} \\ 207.19 \end{gathered}$	$\underset{208.980}{83}$	$\begin{gathered} \mathbf{P}_{[210}^{84} \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{8 5} \\ & \mathbf{A t} \\ & (210] \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{8 6} \\ \mathrm{R}_{(222)} \\ \hline \end{array}$
$\boldsymbol{F}^{87} \mathbf{r}$	88 Ra	${ }^{\ddagger}{ }^{89} \mathrm{C}$	$\begin{aligned} & \mathbf{R f} \\ & \mathbf{R} \mathbf{f} \end{aligned}$		106	107 Bh (262)		$\begin{aligned} & \mathbf{1 0 9} \\ & \mathbf{M} \mathbf{t} \mathbf{t} \end{aligned}$	$\begin{gathered} \mathbf{1 1 0} \\ ? \\ (271) \end{gathered}$	$\stackrel{111}{?}$	$\stackrel{\mathbf{1 1 2}}{?}$						

Numbers in parenthesis are mass
numbers of most stable or most
common isotope
tomic weights corrected to Conform to the 1963 values of the
mmission on Atomic Weights.
The group designations used here are the former chemic

An Important Interpretation

- The stoichiometric coefficients that are present in a balanced chemical reaction are related to the ratios of reactants and products in a chemical reaction
- This ratio is only in terms of moles (or molecules), BUT NOT mass!

Example

- The final step in the production of nitric acid involves the reaction of nitrogen dioxide with water; nitrogen monoxide is also produced. How many grams of nitric acid are produced for every 100.0 g of nitrogen dioxide that reacts?

Solution

- Step 1: Write down the chemical reaction
$-\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{NO}$
- Step 2: Balance the chemical reaction
$-3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}$
- Step 3: Determine the moles of NO_{2} that will react
$-100 \mathrm{~g} \mathrm{NO}_{2} / 46.006 \mathrm{~g} / \mathrm{mol}=2.174 \mathrm{~mol} \mathrm{NO} 2$

Solution (continued)

- Step 4: Use stoichiometry to determine the moles of HNO_{3} that will be produced

$$
\frac{\mathrm{NO}_{2}}{\mathrm{HNO}_{3}}=\frac{3}{2}=\frac{2.174 \mathrm{~mol}}{x}
$$

Solving for $\mathrm{x}, \mathrm{x}=1.449 \mathrm{~mol} \mathrm{HNO}_{3}$

- Step 5: Convert to grams of nitric acid
$-1.449 \mathrm{~mol} \mathrm{HNO}_{3} * 63.013 \mathrm{~g} / \mathrm{mol}=91.31 \mathrm{~g} \mathrm{HNO}_{3}$

Using the periodic table, predict whether the
following chlorides are ionic or covalent: KCI, $\mathrm{NCl}_{3}, \mathrm{ICl}, \mathrm{MgCl}_{2}, \mathrm{PCl}_{5}$, and CCl4.

Limiting and Excess Reagents (Reactants)

- Equivalent-a mathematically equal amount of a chemical substance (in terms of moles)
- Sometimes you don't have the "stoichiometrically correct" number of equivalents
- Cost
-Availability
- Reaction conditions
- Limiting - gets used up entirely
- Excess - remaining (left over)

More on limiting reagents

- This is based on the \# of moles in a balanced chemical reaction
-You cannot simply look at \# of moles directly, or the mass (grams) that are given.
- The limiting reagent always determines the outcome of a chemical reaction
-\# of moles (or grams) of product that can be formed

Example

- Magnesium nitride can be formed by the reaction of magnesium metal with nitrogen gas.
- A) How many grams of magnesium nitride can be made in the reaction of 35.00 g of magnesium and 15.00 g of nitrogen?
- B) How many grams of the excess reactant remain after the reaction?

Solution (part a)

- Step 1: Write down (and balance) the chemical reaction

$$
-3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

- Step 2: Find the \# of moles of each reactant. This represents the moles you HAVE.
$-\mathrm{mol} \mathrm{Mg}=35.00 \mathrm{~g} / 24.305 \mathrm{~g} / \mathrm{mol}=1.440 \mathrm{~mol} \mathrm{Mg}$
$-\mathrm{mol} \mathrm{N} \mathrm{N}_{2}=15.00 \mathrm{~g} / 28.013 \mathrm{~g} / \mathrm{mol}=0.5355 \mathrm{~mol} \mathrm{~N}_{2}$

Solution (part a)

- Step 3: Pick one reactant, and find the number of moles of the other using stoichiometry. This represents the moles you NEED.

$$
\frac{M g}{N_{2}}=\frac{3}{1}=\frac{1.440 \mathrm{~mol}}{x}
$$

Solving for $\mathrm{x}, \mathrm{x}=0.4800 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2}$

Solution (part a)

- Step 4: Compare the moles you HAVE with the moles you NEED. If HAVE > NEED, this is in excess. If you HAVE < NEED, this is limiting.
-We have $0.5355 \mathrm{~mol} \mathrm{~N}_{2}$ and need 0.4800 mol of N_{2}, so N_{2} must be in excess. Therefore Mg is limiting.

Solution (part a)

- Step 5: Using the limiting reactant and stoichiometry, determine the number of moles of product. $\frac{\mathrm{Mg}}{\mathrm{Mg}_{3} \mathrm{~N}_{2}}=\frac{3}{1}=\frac{1.440 \mathrm{~mol}}{x}$
Solving for $\mathrm{x}, \mathrm{x}=0.4800 \mathrm{~mol} \mathrm{Mg}_{3} \mathrm{~N}_{2}$.
- Step 6: Find the mass of the product
$-0.4800 \mathrm{~mol} \mathrm{Mg} \mathrm{N}_{2} * 100.93 \mathrm{~g} / \mathrm{mol}=48.45 \mathrm{~g}$ $\mathrm{Mg}_{3} \mathrm{~N}_{2}$

Solution (part b)

- Step 1: Determine how much N_{2} (the excess reagent) is actually used.
$-0.4800 \mathrm{~mol} \mathrm{~N}_{2} * 28.013 \mathrm{~g} / \mathrm{mol}=13.45 \mathrm{~g} \mathrm{~N}_{2}$
- Step 2: Determine the amount of excess.
$-15.00 \mathrm{~g}-13.45 \mathrm{~g}=1.55 \mathrm{~g} \mathrm{~N} 2$

An alternate solution to part b

- Conservation of mass
-The total mass before the chemical reaction must be the same as the total mass after the chemical reaction
- mass $\mathrm{Mg}+$ mass $\mathrm{N}_{2}=35.00 \mathrm{~g}+15.00 \mathrm{~g}=50.00 \mathrm{~g}$
- Mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}=48.45 \mathrm{~g}$
- Therefore mass of excess N_{2} must be $50.00-48.45 \mathrm{~g}=$ 1.55 g

Yield

- This is related to the efficiency of a chemical reaction (how well it worked)

$$
\% \text { Yield }=\frac{\text { actual }}{\text { theoretical }} X 100 \%
$$

- Actual refers to an experimental quantity
- Theoretical refers to the amount calculated using stoichiometry
- The amounts used can be mass or moles, as long as you are consistent (and both \#'s refer to the product)
- Engineers usually also are concerned with selectivity and conversion.

In an accident, a solution containing 2.5 kg of nitric acid was spilled. Two kilograms of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was quickly spread on the area and CO_{2} was
released by the reaction.
Was sufficient $\mathrm{Na}_{2} \mathrm{CO}_{3}$
used to neutralize all of the acid?

Balancing Chemical Reactions

- The \# of each type of atom must balance (conservation of mass)
- Can use coefficients in front to make things work.
- Good rule of thumb - try to balance the atoms that show up in the least \# of spots (\# of compounds) $1^{\text {st }}$
- It's OK to use fractions
- If whole \#'s are wanted/needed just multiply by LCD

Example: Combustion of Ethane

- Step 1: Write down the reaction
$-\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- Step 2: Balance the C's
$-\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- Step 3: Balance the H's
$-\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
- Step 4: Balance the O's
$-\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
- Step 5: Use whole number coefficients (optional)
$-2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Balancing redox reactions

- Key: The number of electrons "lost" (in an oxidation) must be the same as the number of electrons "gained" (in a reduction)

1) Determine oxidation numbers and write down the half-reactions.
2) Balance the atoms in each half-reaction (except O and H)
3) Balance the charge in each half-reaction by adding electrons.
4) Balance the total number of electrons for both half-reactions and add the two reactions.
5) Add $\mathrm{H}_{2} \mathrm{O}$ to balance the O 's (and $\mathrm{H}^{\prime} \mathrm{s}$).
6) If acidic, add H^{+}to balance the H^{\prime} s.
7) If basic, add H^{+}to balance the $\mathrm{H}^{\prime} \mathrm{s}$, then add an equal number of OH^{-}to both sides $\left(\mathrm{H}^{+}+\right.$ $\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$), and simplify.
Check: The total charge on the left side must be equal to the total charge on the right side of the overall reaction.

Example

- In basic solution, Br_{2} disproportionates to bromide ions and bromate ions. Use the half-reaction method to balance the equation for this reaction:

$$
\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}
$$

Solution

- First assign oxidation numbers to the $\mathrm{Br}^{\prime} \mathrm{s}$: $\mathrm{Br}_{2}=0, \mathrm{Br}^{-}=-1, \mathrm{Br}^{\text {in }} \mathrm{BrO}_{3}{ }^{-}=+5$ (since O has an oxidation number of -2)
- So the half-reactions are $\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$and $\mathrm{Br}_{2} \rightarrow 2 \mathrm{BrO}_{3}^{-}+10 \mathrm{e}^{-}$
- Balance the number of electrons by multiplying the reduction reaction by 5 , and add the two reactions: $6 \mathrm{Br}_{2}+10 \mathrm{e}^{-} \rightarrow 10 \mathrm{Br}^{-}+2 \mathrm{BrO}_{3}{ }^{-}+10 \mathrm{e}^{-}$
- Simplify: $3 \mathrm{Br}_{2} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}$
- Add $\mathrm{H}_{2} \mathrm{O}$ to balance the $\mathrm{O}^{\prime} \mathrm{s}: 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}$
- Add H${ }^{+}$and OH^{-}(since the solution is basic) to balance the $\mathrm{H}^{\prime} \mathrm{s}: 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}+$ $6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{OH}^{-}$
- Simplify: $3 \mathrm{Br}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
- Check: Total charge on the left $=3(0)+6(-1)=-6$, and the total charge on the right is $5(-1)+-1+3(0)=-6$

Balance the following equation according to the half-reaction method:
 $\mathrm{Zn}(\mathrm{s})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow$ $\mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$ (in base)

Arrhenius Theory of Dissociation

- Dissociation happens spontaneously when ionic (soluble) compounds dissolve in $\mathrm{H}_{2} \mathrm{O}$.
- The more ions are present (i.e. the better it dissociates), the more electricity is conducted.

Ionic Solutes

Classification of electrolytes

- Strong - soluble ionic substances (salts), mineral acids, bases
- Acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}$
- Bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
- Weak - carboxylic acids, amines
- Non-electrolytes - most organic compounds
- The words "strong" and "weak" refer only to how well something dissociates and forms ions, NOT if it is dangerous, reactive, etc.

Determining concentrations of ionic solutions

- For the [] of ions, we need to consider both the formula and whether or not it dissociates completely (strong electrolyte)

