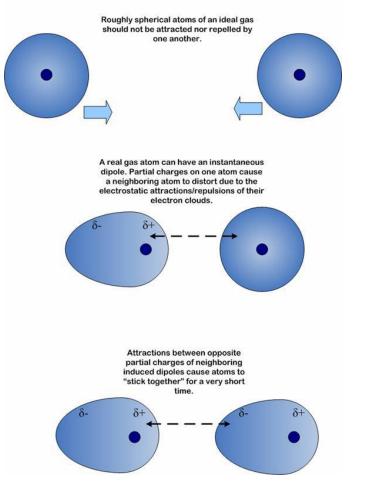
What is a bond?

- The "glue" that holds molecules together
- Really an electrostatic force between charged objects
- Coulomb's Law
 - Attractive forces between protons and electrons
 - Repulsive forces between electrons
 - Repulsive forces between protons (can be ignored due to the Born-Oppenheimer approximation)
- Represents a minimum in a potential energy diagram

Ionic Compounds

- Ions atoms that have gained or lost electrons (have + or charge)
 - Can have very different properties than their corresponding elements
- Cations + charge (lost electrons)
 - Usually originate from metals
- Anions - charge (gained electrons)
 - Usually originate from nonmetals
- Ions can also be *polyatomic* (composed of more than one atom)

Types of bonded compounds

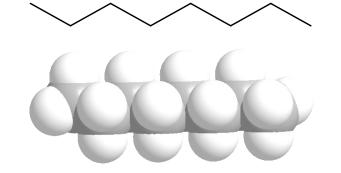

Туре	Structural Particles	Intermolecular Forces
Nonpolar	Atoms or nonpolar molecules	Dispersion forces
Polar	Polar molecules	Dispersion forces, dipole-dipole and dipole-induced dipole
Hydrogen-bonded	Molecules with H bonded to N, O or F	Hydrogen bonds
Network Covalent	Atoms	Covalent bonds
lonic	Cations and Anions	Electrostatic attractions
Metallic	Cations and delocalized electrons	Metallic bonds

Intermolecular Forces

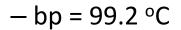
- Present in ALL molecules
 - Explain why condensed phases can exist in the first place
- Strength of forces can vary
 - Electrostatics
 - Size
 - Shape
- Can be used to predict trends in stability
 - Melting point
 - Boiling point

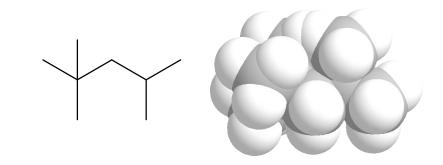
van der Waals Forces

- Generally the weakest intermolecular forces (2-20 kJ/mol)
- Due to dispersion forces between instantaneous and induced dipoles
- <u>Polarizability</u> measures the degree to which the electron density can be distorted by the presence of an external field
 - Related to strength of dispersion forces
 - Generally increase as the size (i.e. number of electrons) increases


https://learnbiochemistry.wordpress.com/2011/09/11/chapter-2-water-non-covalent-bonds-van-der-waals-forces/

van der Waals Forces


- Molecular shape can also affect the strength of these forces
 - Generally dispersion increases among elongated molecules (compared to more compact molecules)


Example – alkane isomers

- Octane
 - mp = -56.8 °C
 - − bp = 125.7 °C

- Isooctane
 - mp = -104.7 °C

Types of covalent bonds

- Nonpolar electrons are shared "equally"
- Polar electrons are shared "unequally"
- Polarity within a bond is directly related to the electronegativity difference between the atoms of the bond
- Rough guidelines (there are always exceptions, and it is more of a continuum anyway)
 - 0< $\Delta\chi$ < 0.6 = nonpolar
 - $-0.6 < \Delta \chi < 1.6 = polar$

 $-\Delta\chi$ > 1.6 = ionic

Polarity and dipole moments

- Partial charge (δ) used to represent "slight" or small charge on an atom in a polar bond
 - Not quite ionic, but they do have a different tendency to have more or less electron density
- $\mu {=} \delta^* d$, where δ is the (partial) charge and d is the distance between the charges
 - Usually expressed in Debyes (1 D = $3.34X10^{-30}$ C*m)
- μ is a vector quantity has magnitude and direction
 - Can also be depicted using an arrow

Types of covalent bonds

- Nonpolar electrons are shared "equally"
- Polar electrons are shared "unequally"
- Polarity within a bond is directly related to the electronegativity difference between the atoms of the bond
- Rough guidelines (there are always exceptions, and it is more of a continuum anyway)

$$-0 < \Delta \chi < 0.6 = nonpola$$

 $-0.6 < \Delta \chi < 1.6 = polar$
 $-\Delta \chi > 1.6 = ionic$

Polarity and dipole moments

- Partial charge (δ) used to represent "slight" or small charge on an atom in a polar bond
 - Not quite ionic, but they do have a different tendency to have more or less electron density
- $\mu = \delta^* d$, where δ is the (partial) charge and d is the distance between the charges

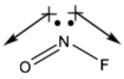
-Usually expressed in Debyes (1 D = $3.34X10^{-30}$ C*m)

- μ is a vector quantity has magnitude and direction
 - Can also be depicted using an arrow

Polarity revisited

- Dipole moments can be defined between two atoms in a bond to determine the polarity of the bond (polar or nonpolar)
- Because dipole moments are vector quantities, we can also define a molecular dipole moment to be the sum of these individual dipole moments.

$$\mu_{molecule} = \sum \mu_{bond}$$


• It is possible that $\mu_{molecule} = 0$ even if $\mu_{bond} \neq 0$ because of symmetry!

- First let's look at NOF. The number of valence electrons is 5+6+7 = 18
- Following the rules for Lewis dot structures we come up with the following:


 Following the rules for VSEPR we predict this to have an angular molecular geometry (though similar to a trigonal planar shape)

• Now let's consider electronegativities: F = 4.0, O = 3.5 and N = 3.0. The bonds are considered to be polar since $\Delta \chi$ = 1.0 for N-F bond and $\Delta \chi$ = 0.5 for a N-O bond.

• This results in a net dipole (downward) of a pretty substantial size (1.81 D)

- Let's perform a similar analysis on NO₂F.
- The Lewis dot structure we predict is the following resonance form:

• VSEPR predicts that this molecule will also be in the trigonal planar family, with only slightly different bond angles from those of NOF.

- The electronegativities are the same as before, so the bonds will still be polar
- However the overall dipole moment will be quite different!

• There is still a slight net dipole since F is more electronegative than O (μ = 0.47 D)

VSEPR theory

- Valence-shell electron-pair repulsion
- Predict molecular shapes based on the total number of (pairs of) electrons
 - Bonded and nonbonded (lone pairs) count, though they lead to different shapes
- <u>Electrostatic interactions</u> molecules will arrange themselves in such a way as to minimize repulsion (keep the electrons as far away from each other as possible)
- <u>Steric hindrance</u> molecules will arrange themselves in such a way as to have the largest (bulkiest) groups as far away from each other as possible

Electron group

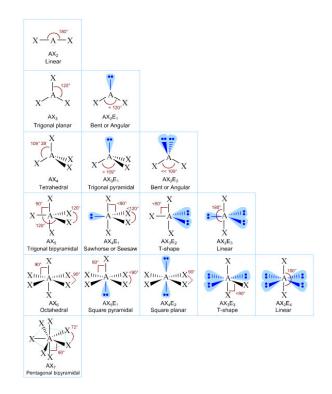
- Any collection of valence electrons on a central atom that will affect the overall structure of a molecule
 - Single unpaired electron (radical)
 - Nonbonded electrons (lone pair)
 - One bonding pair of electrons (single bond)
 - Two bonding pairs of electrons (double bond)
 - Three bonding pairs of electrons (triple bond)

Electron group geometry

Number of electron groups	Geometry
2	Linear
3	Trigonal planar
4	Tetrahedral
5	Trigonal bipyramidal
6	Octahedral

 These represent ideal situations where all electron groups affect structure in the same fashion, regardless of whether they are a single electron (radical), single pair of nonbonded electrons (lone pair), or single/multiple pairs of bonded electrons (single, double, triple bonds)

- Attempts to distinguish between bonded and non-bonded electrons
- Lone pairs are believed to have a significant effect on the structure of the molecule
 - Their charge cloud is attracted to one nucleus (the central atom) rather than two (central atom and outer atom). Thus it is spread out further and able to exert a greater repulsion
 - LP-LP repulsions > LP-BP repulsions > BP-BP repulsions


- Designation
 - $-AX_{n}E_{m}$
 - -A = central atom
 - X = outer atom (bonded electron)
 - E = lone pair (non-bonded electrons)
 - $-n,m = integers (2 \le n \le 6, 0 \le m \le 3)$

Number of electron groups	Electron group geometry	# of Lone pairs	VSEPR notation	Molecular geometry	"Ideal" bond angles	Example
2	Linear	0	AX ₂	Linear	180°	BeCl ₂
3	Trigonal planar	0	AX ₃	Trigonal planar	120°	BF ₃
3	Trigonal planar	1	AX ₂ E	Angular (bent)	118º	SO ₂
4	Tetrahedral	0	AX ₄	Tetrahedral	109.5°	CH ₄
4	Tetrahedral	1	AX ₃ E	Trigonal pyramidal	107º	NH ₃
4	Tetrahedral	2	AX ₂ E ₂	Angular (bent)	105°	H ₂ O

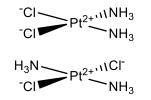
Number of electron groups	Electron group geometry	# of Lone pairs	VSEPR notation	Molecular geometry	Ideal bond angles	Example
5	Trigonal bipyramidal	0	AX ₅	Trigonal bipyramidal	90°, 120°, 180°	PCI ₅
5	Trigonal bipyramidal	1	AX ₄ E	See-saw	90°, 120°, 180°	SF ₄
5	Trigonal bipyramidal	2	AX ₃ E ₂	T-shaped	90°, 180°	CIF ₃
5	Trigonal bipyramidal	3	AX ₂ E ₃	Linear	180°	XeF ₂

Number of electron groups	Electron group geometry	# of Lone pairs	VSEPR notation	Molecular geometry	Ideal bond angles	Example
6	Octahedral	0	AX ₆	Octahedral	90°, 180°	SF ₆
6	Octahedral	1	AX ₅ E	Square pyramidal	90°	BrF ₅
6	Octahedral	2	AX ₄ E ₂	Square planar	90°	XeF ₄

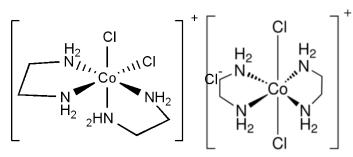
- Shapes can be classified into families based on number of total pairs of electrons
- Geometries will vary slightly within a family, but less than from one family to another

Types of isomers

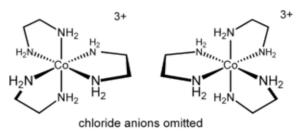
- Structural have the same chemical formula but are attached differently
 - Donor atoms on ligands
 - Ex. Pentamminenitrito-N-cobalt(III) vs. Pentamminenitrito-O-cobalt(III)
 [Co(NO₂)(NH₃)₅]²⁺ vs. [Co(ONO)(NH₃)₅]²⁺
 - Ligands vs. free ions (outside of coordination sphere)
 - Ex. Pentamminesulfatochromium(III) chloride vs. Pentamminechlorochromium(III) sulfate

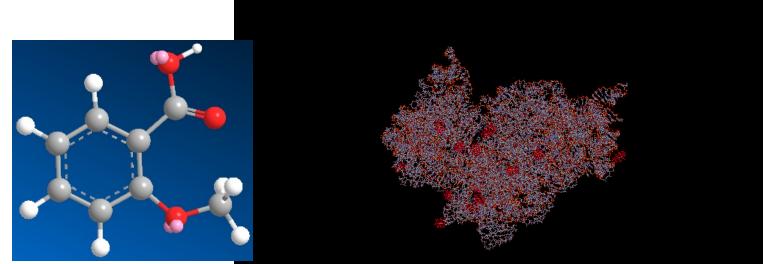

[Cr(SO₄)(NH₃)₅]Cl vs. [CrCl(NH₃)₅]SO₄

Types of isomers

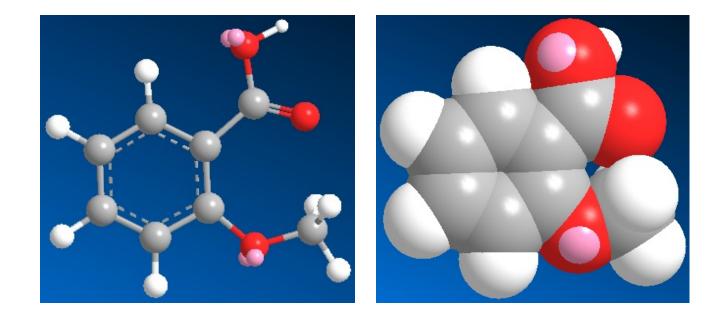

- Stereo same atoms connected in the same way, but different 3-D shapes
 - Geometric identical groups can be on the same side (cis) or opposite side (trans)
 - Have different chemical and physical properties
 - Optical groups are oriented to form non-superimposable mirror images (enantiomers)
 - Racemic mixture 1:1 ratio of two enantiomers
 - Have identical chemical and physical properties*
 - Can generally be distinguished by how they rotate the plane of polarized light in a polarimeter
 - Optical isomers are *chiral* molecules

Comparison of geometric and optical isomers


• Cisplatin and transplatin (square planar)

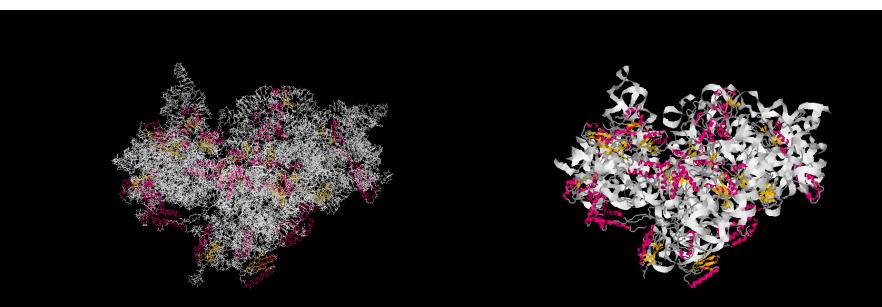

 cis and trans-dichloro bis(ethylenediamine) cobalt(III) ion (octahedral)

 Tris(ethylenediamine) cobalt(III) ion


- Molecules can (and usually do) have well defined shapes, which can have a direct correlation to their function
- Ex. Aspirin

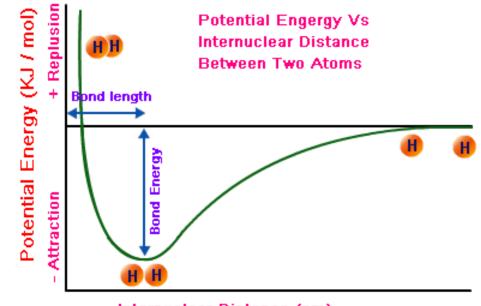
Visualizing Molecules (Aspirin)

Ball and Stick


Space filling

Visualizing Molecules (16S ribosome)

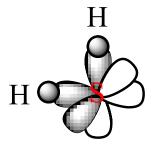
Wireframe

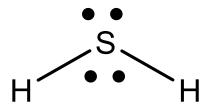

Cartoon (Structure color coded)

Valence bond theory

- Mathematically simpler
- Can be used to explain bonding in terms of orbital overlap
 The more orbital overlap there is, the stronger the bond will be
- Also gives rise to bond lengths and bond strengths
 - Internuclear position and corresponding energy of maximum overlap

Valence Bond theory (in pictures)



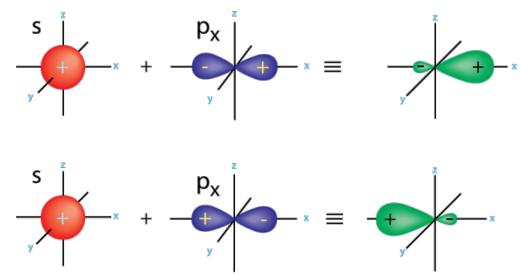

Internuclear Distance (pm)

http://chemistry.tutorvista.com/organic-chemistry/chemical-bonds.html

Example: H₂S

- Predicted bond angle (VBT): 90°
- Predicted bond angle (VSEPR): <109.5°
- Experimentally determined bond angle: 92.1°

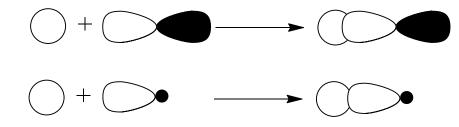
Hybridization

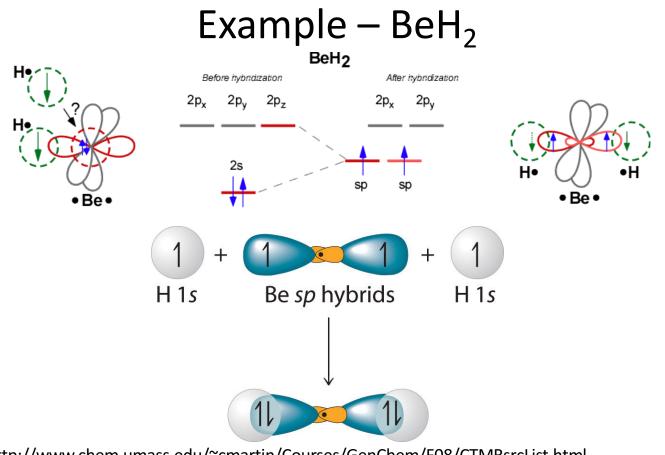

- Problem Atomic orbitals only work for atoms!
- Disagreement between theory and experimental data
 - Bond-dissociation energy
 - Bond angles
 - Bond length

Rules for hybridization

- Hybridization only exists on paper!
 - Atomic orbitals can be "combined" (mathematically, if nothing else)
- Hybrid orbitals can be constructed as long as two conditions are met
 - The total number of orbitals remains constant
 - The total energy of the system remains constant
- Hybridization can be used for bonding as well as non-bonding electron pairs

sp Hybridization

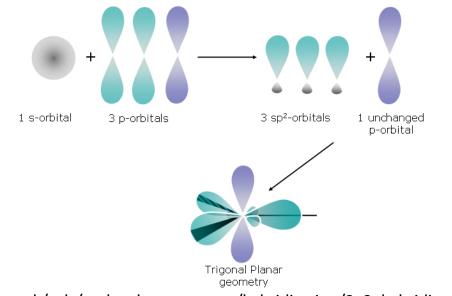

- Combination of an s orbital and a p orbital
- Result can be "constructive" or "destructive"



http://www.grandinetti.org/Teaching/Chem121/Lectures/Hybridization

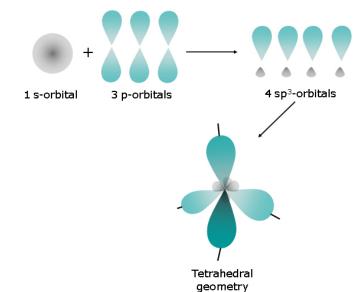
sp Hybridization

- "Character" % of hybrid orbital that originated from a given atomic orbital
- 50% s character, 50% p character
- Leads to greater orbital overlap



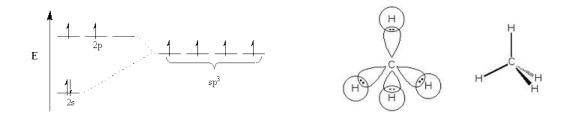
http://www.chem.umass.edu/~cmartin/Courses/GenChem/F08/CTMRsrcList.html http://catalog.flatworldknowledge.com/bookhub/reader/4309?e=averill_1.0-ch09_s02

sp² Hybridization


• Combination of one s orbital and two p orbitals (33% s character, 67% p character)

http://www.ntu.ac.uk/cels/molecular_geometry/hybridization/Sp2_hybridization/index.html

sp³ Hybridization

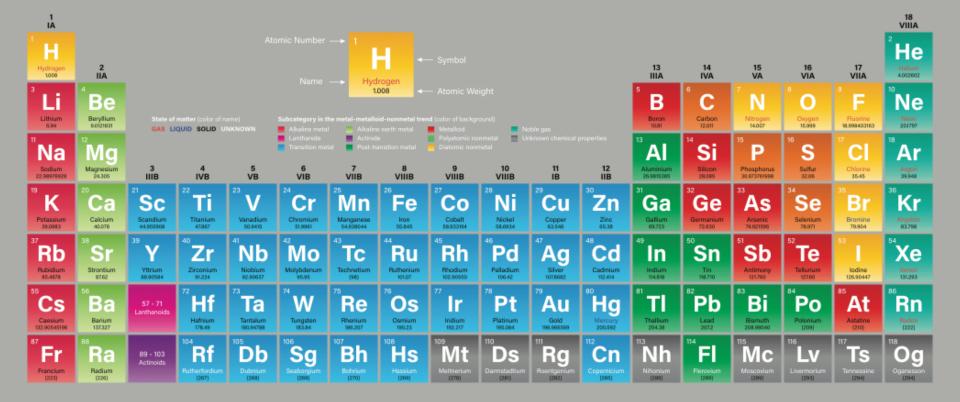

• 25% s, 75% p character

http://www.ntu.ac.uk/cels/molecular_geometry/hybridization/Sp3_hybridization/index.html

Why hybridization?

- Better overlap than if atomic orbitals are used
- Better agreement with experimental data

http://www.chemistry.ccsu.edu/glagovich/teaching/311/content/bond/bondhybrid.html http://www.sparknotes.com/chemistry/organic1/orbitals/section1.html


Hybridization involving d subshells

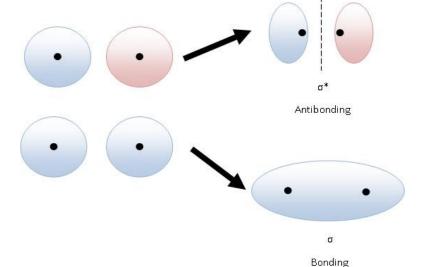
- For atoms in the 3rd period and beyond of the periodic table, it is possible for them to also use d orbitals for bonding
- An expanded octet rule argument is typically invoked
 - Experimental evidence is actually pretty weak!

Summary of hybridization schemes

Hybrid orbital type	Geometry	Example
sp	Linear	BeCl ₂
sp ²	Trigonal planar	BF ₃
sp ³	Tetrahedral	CH ₄
sp ³	Trigonal pyramidal	NH ₃
sp ³	Bent (angular)	H ₂ O
sp³d (or dsp³)	Trigonal bipyramidal	PCI ₅
sp ³ d ² (or d ² sp ³)	Octahedral	SF ₆

Identify the hybridization of the central atom in Cl₂CO (C is the central atom)

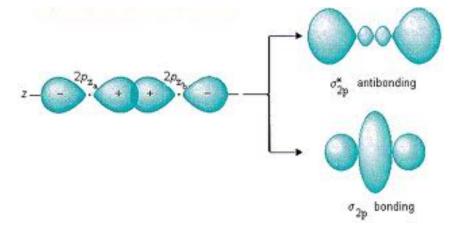
Molecular Orbital (MO) Theory


- If the electrons in an atom are described by atomic orbitals, then the electrons in molecules should be described by molecular orbitals!
- LCAO MO is a linear combination of AO's
- Atomic orbitals can add constructively or destructively
- Generally only used for diatomic molecules

MO Theory (continued)

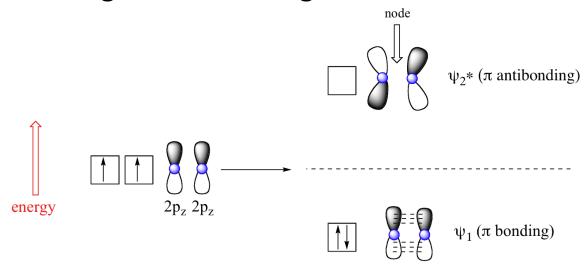
- □ Rules for Constructing MO's
 - The *total number of orbitals* must remain the same
 - The *total energy* must remain the same
- Bonding MO is lower in energy than AO
- □ Antibonding MO is higher in energy than AO
- Nonbonding MO is equal in energy to AO
 - Due to orthogonal orbitals (noninteracting)

MO's arising from s orbitals


- Sigma bonds (σ) since orbitals are end to end
- Can be bonding (constructive) or antibonding (destructive)

http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding/Molecular_Orbital_Theory

MO's arising from p orbitals


- Sigma bonds (σ) since orbitals are end to end
- Can be bonding or antibonding

chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/mo.html

MO's arising from p orbitals

- pi bonds (π) since orbitals are parallel
- Can be bonding or antibonding

http://chemwiki.ucdavis.edu/Organic_Chemistry/Organic_Chemistry_With_a_Biological_Emph asis/Chapter__2%3A_Introduction_to_organic_structure_and_bonding_II/Section_2.1%3A_Mo lecular_orbital_theory%3A_conjugation_and_aromaticity

How are the following similar, and how do they differ?

(a) σ molecular orbitals and π molecular orbitals (b) bonding orbitals and antibonding orbitals

What it means to be non-ideal

- Intermolecular forces between solute and solvent molecules are <u>stronger</u> than other intermolecular forces
 - $-\,\Delta \mathsf{H}_3\!\!>\!\!\Delta \mathsf{H}_1\!\!+\!\Delta \mathsf{H}_2$
 - $-\Delta H_{solution}$ <0, $\Delta V_{solution}$ <0
- Intermolecular forces between solute and solvent molecules are <u>weaker</u> than other intermolecular forces
 - $-\,\Delta \mathsf{H}_{3} {<} \Delta \mathsf{H}_{1} {+} \Delta \mathsf{H}_{2}$
 - $-\Delta H_{solution}$ >0, $\Delta V_{solution}$ >0
 - If forces are much weaker, then a solution may not form at all!

Heat is released when some solutions form; heat is absorbed when other solutions form. **Provide a molecular** explanation for the difference between these two types of spontaneous processes.