Measuring a Nation’s Income
GDP and Other Measures

Principles of Macroeconomics
Module 2.1
Gross Domestic Product

The market value of all final goods and services produced within a country in a given period of time.

• GDP measures how well an economy is doing over time
• GDP measures how well an economy is doing compared to other economies
• GDP measures fluctuations in the economy
Breakdown of GDP

• **Market Value:** the amount of money needed to buy all goods and services produced in the economy at market prices

• **Final goods and services:** Products that are for final sale – not intermediate goods used in the production of other goods

• **In a country:** Counts only goods produced within the legal geographical boundaries of a country regardless of who makes them

• **In a given period:** Counts only goods produced within that current year or quarter (not goods produced in the past)
Components of GDP

Output Equation:
\[Y = C + I + G + NX \]

- \(Y \) = Output or GDP
 Amount of goods and services produced by an economy
- \(C \) = Consumption
 Spending on goods and services by households
- \(I \) = Investment
 Spending on capital goods by firms
- \(G \) = Government Spending
 Spending on goods and services by the government
- \(NX \) = Net Exports
 Exports - Imports
Nominal GDP vs. Real GDP

Nominal GDP: The value of output at current prices – takes into account price change and quantity change

\[\text{NGDP} = P_1 * Q_1 + P_2 * Q_2 + P_3 * Q_3 + \ldots + P_n * Q_n \]

Real GDP: The value of output at constant prices – takes into account only quantity change

\[\text{RGDP} = P_b * Q_1 + P_b * Q_2 + P_b * Q_3 + \ldots + P_b * Q_n \]

Pb = prices at base year
Test your Understanding

Consider an economy that produces calculators, and pens. Using the following table determine:

- Nominal GDP each year
- Real GDP if the base year is 2011.

<table>
<thead>
<tr>
<th></th>
<th>Calculators</th>
<th></th>
<th>Pens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price</td>
<td>Quantity</td>
<td>Price</td>
</tr>
<tr>
<td>2011</td>
<td>$20</td>
<td>100</td>
<td>$5</td>
</tr>
<tr>
<td>2012</td>
<td>$20.50</td>
<td>105</td>
<td>$5.25</td>
</tr>
<tr>
<td>2013</td>
<td>$21.75</td>
<td>107</td>
<td>$5.80</td>
</tr>
</tbody>
</table>
Test your Understanding

Nominal GDP = P x Q

<table>
<thead>
<tr>
<th>Year</th>
<th>Calculators</th>
<th></th>
<th></th>
<th>Pens</th>
<th></th>
<th></th>
<th>Nominal GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>Q</td>
<td>PxQ</td>
<td>P</td>
<td>Q</td>
<td>PxQ</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>$20</td>
<td>100</td>
<td>$2,000</td>
<td>$5</td>
<td>300</td>
<td>$1,500</td>
<td>$3,500</td>
</tr>
<tr>
<td>2012</td>
<td>$20.50</td>
<td>105</td>
<td>$2,153</td>
<td>$5.25</td>
<td>350</td>
<td>$1,838</td>
<td>$3,990</td>
</tr>
<tr>
<td>2013</td>
<td>$21.75</td>
<td>107</td>
<td>$2,327</td>
<td>$5.80</td>
<td>425</td>
<td>$2,465</td>
<td>$4,792</td>
</tr>
</tbody>
</table>
Test your Understanding

Real GDP = P(2011) x Q

<table>
<thead>
<tr>
<th></th>
<th>Calculators</th>
<th></th>
<th>Pens</th>
<th></th>
<th>Real GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>Q</td>
<td>PxQ</td>
<td>P</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>$20</td>
<td>100</td>
<td>$2,000</td>
<td>$5</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>$20.50</td>
<td>105</td>
<td>$2,100</td>
<td>$5.25</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>$21.75</td>
<td>107</td>
<td>$2,140</td>
<td>$5.80</td>
</tr>
</tbody>
</table>
Change in GDP

- **Change in nominal GDP** – reflects changes in both prices and quantities produced
- **Change in real GDP** – reflects only changes in quantities produced

Real GDP is “corrected” for inflation

Growth in production – growth in real GDP!

Income and economic well being is rising!
Growth in GDP

\[
Growth in GDP = \frac{GDP_2 - GDP_1}{GDP_1} \times 100\%
\]

<table>
<thead>
<tr>
<th>Year</th>
<th>Nominal GDP</th>
<th>Growth</th>
<th>Real GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$3,500</td>
<td>$3,500</td>
<td>$3,500</td>
</tr>
<tr>
<td>2012</td>
<td>$3,990</td>
<td></td>
<td>$3,850</td>
</tr>
<tr>
<td>2013</td>
<td>$4,792</td>
<td></td>
<td>$4,265</td>
</tr>
</tbody>
</table>
Growth in GDP

\[
\text{Growth in GDP} = \frac{GDP_2 - GDP_1}{GDP_1} \times 100\%
\]

<table>
<thead>
<tr>
<th></th>
<th>Nominal GDP</th>
<th>Growth</th>
<th>Real GDP</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$3,500</td>
<td>-</td>
<td>$3,500</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>$3,990</td>
<td>14.0%</td>
<td>$3,850</td>
<td>10.0%</td>
</tr>
<tr>
<td>2013</td>
<td>$4,792</td>
<td>20.1%</td>
<td>$4,265</td>
<td>10.8%</td>
</tr>
</tbody>
</table>
Using GDP to understand prices

- **Price level in an economy** – a statement of what is happening with prices overall in an economy.

- **GDP Deflator** – index of prices based on nominal and real GDP

\[
GDP \text{ Deflator} = \frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100
\]
Calculating Inflation with GDP

<table>
<thead>
<tr>
<th></th>
<th>NOMINAL GDP</th>
<th>REAL GDP</th>
<th>GDP Deflator</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$9,500</td>
<td>$9,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$11,030</td>
<td>$10,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$12,532</td>
<td>$10,715</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflation:
Percentage change in price levels from last year to this year.
Calculating Inflation with GDP

<table>
<thead>
<tr>
<th></th>
<th>NOMINAL GDP</th>
<th>REAL GDP</th>
<th>GDP Deflator</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$9,500</td>
<td>$9,500</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>$11,030</td>
<td>$10,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$12,532</td>
<td>$10,715</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflation:
Percentage change in price levels from last year to this year.
Calculating Inflation with GDP

<table>
<thead>
<tr>
<th></th>
<th>NOMINAL GDP</th>
<th>REAL GDP</th>
<th>GDP Deflator</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$9,500</td>
<td>$9,500</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>$11,030</td>
<td>$10,250</td>
<td>107</td>
<td>7.6%</td>
</tr>
<tr>
<td>2013</td>
<td>$12,532</td>
<td>$10,715</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflation:

Percentage change in price levels from last year to this year.
Calculating Inflation with GDP

<table>
<thead>
<tr>
<th>Year</th>
<th>NOMINAL GDP</th>
<th>REAL GDP</th>
<th>GDP Deflator</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$9,500</td>
<td>$9,500</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>$11,030</td>
<td>$10,250</td>
<td>107</td>
<td>7.6%</td>
</tr>
<tr>
<td>2013</td>
<td>$12,532</td>
<td>$10,715</td>
<td>117</td>
<td>8.2%</td>
</tr>
</tbody>
</table>

Inflation:
Percentage change in price levels from last year to this year.
Key Takeaways

• GDP is one of the most important measures used by economists to gauge what is happening with the economy

• It accounts for consumption, investment, government spending and net exports

• Real GDP controls for changing prices while nominal GDP is calculated using actual prices observed in the economy in that year
Measuring the Cost of Living
Inflation, CPI, and Prices

Principles of Macroeconomics
Module 2.2
Cost of Living

• Another measure of what is happening in the economy is the cost of living

• Prices of many goods and services change in different directions – some increase, some decrease, some stay the same

• When the majority of prices increase – inflation!

Use a price index to measure overall prices in an economy
The Consumer Price Index (CPI)

• Measures the typical consumer’s cost of living
• CPI is made up of a fixed basket of goods whose prices change year over year
• The change in prices for the basket of goods indicates inflation
How the CPI Is Calculated

1. *Fix the “basket.”*

 Determine what goods make it into the basket

 Quantity of goods remains constant

2. *Find the prices.*

 Determine the prices of each good

 Prices change

3. *Compute the basket’s cost.*

 Cost of each good = quantity of each good in basket x price of each good

 Cost of the basket = sum of each cost
How the CPI Is Calculated

4. Choose a base year and compute the index.

\[
\text{CPI} = \frac{\text{Cost of basket in current year}}{\text{Cost of basket in base year}} \times 100
\]

5. Compute the inflation rate.

\[
\text{Inflation rate} = \frac{\text{CPI this year} - \text{CPI last year}}{\text{CPI last year}} \times 100\%
\]
Consider an economy where the typical consumer consumes 10 lbs. of beef and 20 lbs. of chicken. These are the two goods in the CPI basket.

<table>
<thead>
<tr>
<th></th>
<th>price of beef</th>
<th>price of chicken</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$4</td>
<td>$4</td>
</tr>
<tr>
<td>2012</td>
<td>$5</td>
<td>$5</td>
</tr>
<tr>
<td>2013</td>
<td>$9</td>
<td>$6</td>
</tr>
</tbody>
</table>

- What is the CPI each year if the base year is 2010?
- What is the inflation rate in 2011 and 2012?
Test your Understanding

Q of Beef: 10lbs
Q of Chicken: 20lbs

<table>
<thead>
<tr>
<th></th>
<th>PxQ Beef</th>
<th>PxQ Chicken</th>
<th>Cost of the Basket</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$40</td>
<td>$80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$50</td>
<td>$100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$90</td>
<td>$120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test your Understanding

Add up cost Beef and Chicken together

<table>
<thead>
<tr>
<th></th>
<th>PxQ Beef</th>
<th>PxQ Chicken</th>
<th>Cost of the Basket</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$40</td>
<td>$80</td>
<td>$120</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$50</td>
<td>$100</td>
<td>$150</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$90</td>
<td>$120</td>
<td>$210</td>
<td></td>
</tr>
</tbody>
</table>
Test your Understanding

Cost of Basket

Cost of Basket in base

<table>
<thead>
<tr>
<th>Year</th>
<th>PxQ Beef</th>
<th>PxQ Chicken</th>
<th>Cost of the Basket</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$40</td>
<td>$80</td>
<td>$120</td>
<td>100</td>
</tr>
<tr>
<td>2012</td>
<td>$50</td>
<td>$100</td>
<td>$150</td>
<td>125</td>
</tr>
<tr>
<td>2013</td>
<td>$90</td>
<td>$120</td>
<td>$210</td>
<td>175</td>
</tr>
</tbody>
</table>
Test your Understanding

<table>
<thead>
<tr>
<th></th>
<th>PxQ Beef</th>
<th>PxQ Chicken</th>
<th>Cost of the Basket</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$40</td>
<td>$80</td>
<td>$120</td>
<td>100</td>
</tr>
<tr>
<td>2012</td>
<td>$50</td>
<td>$100</td>
<td>$150</td>
<td>125</td>
</tr>
<tr>
<td>2013</td>
<td>$90</td>
<td>$120</td>
<td>$210</td>
<td>175</td>
</tr>
</tbody>
</table>

Inflation: Percentage Change in CPI

- 2010 - 2011: \(\frac{125 - 100}{100} \times 100\% = 25\% \)
- 2011 – 2012: \(\frac{175 - 125}{100} \times 100\% = 40\% \)
Real vs. Nominal Values

- **Nominal Value of Goods**: The value of the good at the current price
- **Real Value of Goods**: The value of the good controlling for price changes
 - Value of the good is corrected for inflation
- **Real Interest Rates = Nominal Interest Rates – Inflation Rate**
Real vs. Nominal Values

If you have $10,000 in student debt at an interest rate of 5%
In 1 year: you will owe $10,000 + $500 = $10,500

This is the nominal value of your debt

But what if inflation is 2%?
What if inflation is 10%?
Real vs. Nominal Values

If you have $10,000 in student debt at an interest rate of 5%
- The inflation rate = 2% and the nominal interest rate = 5%
- Real interest rate = 5% - 2% = 3%
- Real value of debt = $10,000 + $300 = $10,300

- With inflation: the real value of your debt is lower
Real vs. Nominal Values

If you have $10,000 in student debt at an interest rate of 5%
 – The inflation rate = 10% and the nominal interest rate = 5%
 – Real interest rate = 5% - 10% = - 5%
 – Real value of debt = $10,000 + (-$500) = $950

– The higher the inflation: the more it eats away at the value of your debt
Real vs. Nominal Value

<table>
<thead>
<tr>
<th></th>
<th>Real vs. Nominal Value</th>
<th>Good for:</th>
<th>Bad for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Inflation</td>
<td>Real Value less than Nominal Value</td>
<td>Debtors</td>
<td>Savers, Consumers, Creditors</td>
</tr>
<tr>
<td>Zero Inflation</td>
<td>Real Value Equal to Nominal Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Inflation (Deflation)</td>
<td>Real Value Greater than Nominal Value</td>
<td>Savers, Creditors</td>
<td>Debtors</td>
</tr>
</tbody>
</table>
Types of Inflation

Demand Pull Inflation: Inflation is driven by the demand-side of the economy

- Rapid increases in consumption or investment spending
- Sudden increase in exports
- Large increase in government spending
- Excessive money growth fueling investment/spending bubble
Types of Inflation

Cost Push Inflation: Inflation is driven by the supply-side of the economy

• Increase in cost of important goods used in production
• Factors of production/resource prices increase
• Production becomes more expensive – final goods become more expensive
Costs of Inflation

• Menu costs:
 – Cost to businesses of actually changing their prices
• Shoe-leather costs
 – Cost of time and effort that people spend trying to counter-act the effects of inflation, such as holding less cash and having to make additional trips to the bank.
• Drop in purchasing power
 – As prices rise, value of money falls, so what you can buy with the same amount of money declines
Key Takeaways

• The CPI shows the cost of a basket of goods and services that most consumers purchase.

• Though imperfect, it provides a decent reflection on the cost of living in a country and how it changes.

• With the price index (CPI or GDP deflator) we can calculate inflation and adjust for the value of goods overtime.
Principles of Macroeconomics
Module 2.3

Unemployment
Understanding the Labor Market

• The labor market reflects the number of jobs and number of workers in an economy

• If there is a mismatch, shortfall, or difference between workers and jobs available, the economy experiences unemployment

• Two types of unemployment – cyclical (what is actually reported) and natural (estimated)
Labor Force Statistics

Labor force:
% of the labor force that is unemployed

\[LF = \text{# of unemployed} + \text{# of employed} \]
Labor Force Statistics

Unemployment rate (μ):
% of the labor force that is unemployed

$$\mu = 100 \times \frac{\# \text{ of unemployed}}{\text{labor force}}$$

Labor force participation rate (LFPR):
% of the adult population that is in the labor force

$$\text{LFPR} = 100 \times \frac{\text{labor force}}{\text{adult population}}$$
Test your Understanding

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td></td>
<td>5,130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td></td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
<td></td>
</tr>
</tbody>
</table>
Test your Understanding

Find Unemployment Rate:
\[
\frac{5,130}{53,930} = 9.51\%
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td>48,800</td>
<td>5,130</td>
<td>9.51%</td>
<td>72.00%</td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td>27,600</td>
<td>25,171</td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
</tr>
</tbody>
</table>
Test your Understanding

Find Labor Force Participation Rate: \[\frac{53,930}{74,938} = 72\% \]

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td>48,800</td>
<td>5,130</td>
<td>9.51%</td>
<td>72.00%</td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td>27,600</td>
<td>25,171</td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
</tr>
</tbody>
</table>
Test your Understanding

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td>48,800</td>
<td>5,130</td>
<td>9.51%</td>
<td>72.00%</td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td>27,600</td>
<td>25,171</td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
</tr>
</tbody>
</table>

Find “Employment Rate”:

100% - 9.51% = 90.49%

Multiply by Labor Force:

53,930*90.49% = 48,800
Test your Understanding

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td>48,800</td>
<td>5,130</td>
<td>9.51%</td>
<td>72.00%</td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td>27,600</td>
<td>25,171</td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
</tr>
</tbody>
</table>

Find Labor Force:

\[38,530 \times 71.6\% = 27,600 \]
Test your Understanding

<table>
<thead>
<tr>
<th>Country</th>
<th>Adult Population</th>
<th>Labor Force</th>
<th>Employed People</th>
<th>Unemployed People</th>
<th>Unemployment Rate</th>
<th>Labor-Force Participation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country A</td>
<td>74,938</td>
<td>53,930</td>
<td>48,800</td>
<td>5,130</td>
<td>9.51%</td>
<td>72.00%</td>
</tr>
<tr>
<td>Country B</td>
<td>38,530</td>
<td>27,600</td>
<td>25,171</td>
<td>2,429</td>
<td>8.80%</td>
<td>71.60%</td>
</tr>
</tbody>
</table>

Find “Employment Rate”:
100% - 8.8% = 91.2%

Multiply by Labor Force:
27,600*91.2% = 25,171
Limitations of the Unemployment Rate

• It excludes discouraged workers.
• It does not distinguish between full-time and part-time work, or people working part time because full-time jobs not available.
• Some people misreport their work status in the BLS survey
• Cannot account for the difficulty in finding a job after a long break in employment
Limitations of the Unemployment Rate

• It excludes discouraged workers.

• It does not distinguish between full-time and part-time work, or people working part time because full-time jobs not available.

• Some people misreport their work status in the BLS survey

• Cannot account for the difficulty in finding a job after a long break in employment
Limitations of the Unemployment Rate

• It excludes discouraged workers.
• It does not distinguish between full-time and part-time work, or people working part time because full-time jobs not available.
• Some people misreport their work status in the BLS survey
• Cannot account for the difficulty in finding a job after a long break in employment
Limitations of the Unemployment Rate

• It excludes discouraged workers.

• It does not distinguish between full-time and part-time work, or people working part time because full-time jobs not available.

• Some people misreport their work status in the BLS survey

• Cannot account for the difficulty in finding a job after a long break in employment
Cyclical Unemployment vs. the Natural Rate

Natural rate of unemployment
- The normal rate of unemployment around which the actual unemployment rate fluctuates

Cyclical unemployment
- The deviation of unemployment from its natural rate
- Associated with business cycles
U.S. Unemployment, 1960–2012

Unemployment rate

Natural rate of unemployment

percentage of labor force

Why a Natural Rate of Unemployment?

Even when the economy is doing well, there is always some unemployment:

Frictional factors
- Occurs when workers spend time searching for the jobs that best suit their skills and tastes
- Short-term for most workers

Structural factors
- Occurs when there is a mismatch between skills of workers and skills required for jobs
- Industries expand or contract with new technology creating new employment opportunities that make some products and jobs obsolete
- Barriers exist in the labor market that create unemployment
Structural vs. Frictional Unemployment

• Jeremy graduated from his MBA in December. He is looking for a job in Boston.

• Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

• Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.
Structural vs. Frictional Unemployment

- **FRICIONAL**: Jeremy graduated from his MBA in December. He is looking for a job in Boston.

- **STRUCTURAL**: Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

- **FRICIONAL**: Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.
Structural vs. Frictional Unemployment

• Jeremy graduated from his MBA in December. He is looking for a job in Boston.

• Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

• Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.

• The employment situation for US workers whose manufacturing firm has moved operations to Mexico.
Structural vs. Frictional Unemployment

- **FRICTIONAL**: Jeremy graduated from his MBA in December. He is looking for a job in Boston.

- **STRUCTURAL**: Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

- **FRICTIONAL**: Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.

- **STRUCTURAL**: The employment situation for US workers whose manufacturing firm has moved operations to Mexico.
Structural vs. Frictional Unemployment

• Jeremy graduated from his MBA in December. He is looking for a job in Boston.

• Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

• Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.
Structural vs. Frictional Unemployment

• FRICTIONAL: Jeremy graduated from his MBA in December. He is looking for a job in Boston.

• STRUCTURAL: Minimum wage laws increase in NYC to $15 per hour. McDonald’s replaces its service staff with electronic terminals where customers can place their order.

• FRICTIONAL: Sarah was laid off from her position in a publishing house. She is applying to different positions to make a career change.
Some Causes of Structural Unemployment

- **Technological Advancements** -- *Automation of jobs eliminates the demand for labor to fill those positions*

- **Unemployment Insurance** – *Government provides temporary payment transfers to alleviate the hardship of unemployment*

- **Minimum Wage Laws** – *Mandates on wages create a mismatch between workers that want jobs and jobs available at the minimum wages*
Some Causes of Structural Unemployment

- **Unions** – Collective bargaining and union representation makes it difficult for employers to adjust their demand for labor in response to market conditions
Some Causes of Structural Unemployment

- **Efficiency Wages** - *Employers sometimes choose to pay workers more than the equilibrium wage*
 - Promotes worker effort
 - Attracts higher quality applicants for the position
 - Minimizes worker turnover
Key Takeaways

• Unemployment in the economy is inevitable – there is always someone in between jobs or looking for the next job

• The level of natural unemployment varies between countries because of structural unemployment or certain barriers that exist in the labor market

• The unemployment rate differs from the natural rate due to short term fluctuations in the economy (business cycles) which also reflect fluctuations in output